516 research outputs found

    Geographic information system (GIS) maps and malaria control monitoring: intervention coverage and health outcome in distal villages of Khammouane province, Laos

    Get PDF
    Abstract Background Insecticide-treated nets (ITNs) are a key intervention to control malaria. The intervention coverage varies as a consequence of geographical accessibility to remote villages and limitations of financial and human resources for the intervention. People's adherence to the intervention, i.e., proper use of ITNs, also affects malaria health outcome. The study objective is to explore the impact of the intervention coverage and people's adherence to the intervention on malaria health outcome among targeted villages in various geographic locations. Methods Geographic information system (GIS) maps were developed using the data collected in an active case detection survey in Khammouane province, Laos. The survey was conducted using rapid diagnostic tests (RDTs) and a structured questionnaire at 23 sites in the province from June to July, the rainy season, in 2005. A total of 1,711 villagers from 403 households participated in the survey. Results As indicated on the GIS maps, villages with malaria cases, lower intervention coverage, and lower adherence were identified. Although no malaria case was detected in most villages with the best access to the district center, several cases were detected in the distal villages, where the intervention coverage and adherence to the intervention remained relatively lower. Conclusion Based on the data and maps, it was demonstrated that malaria remained unevenly distributed within districts. Balancing the intervention coverage in the distal villages with the overall coverage and continued promotion of the proper use of ITNs are necessary for a further reduction of malaria cases in the province.</p

    Report of the POGO task force for biological observations

    Get PDF

    Fate specification and tissue-specific cell cycle control of the <i>Caenorhabditis elegans</i> intestine

    Get PDF
    Coordination between cell fate specification and cell cycle control in multicellular organisms is essential to regulate cell numbers in tissues and organs during development, and its failure may lead to oncogenesis. In mammalian cells, as part of a general cell cycle checkpoint mechanism, the F-box protein β-transducin repeat-containing protein (β-TrCP) and the Skp1/Cul1/F-box complex control the periodic cell cycle fluctuations in abundance of the CDC25A and B phosphatases. Here, we find that the Caenorhabditis elegans β-TrCP orthologue LIN-23 regulates a progressive decline of CDC-25.1 abundance over several embryonic cell cycles and specifies cell number of one tissue, the embryonic intestine. The negative regulation of CDC-25.1 abundance by LIN-23 may be developmentally controlled because CDC-25.1 accumulates over time within the developing germline, where LIN-23 is also present. Concurrent with the destabilization of CDC-25.1, LIN-23 displays a spatially dynamic behavior in the embryo, periodically entering a nuclear compartment where CDC-25.1 is abundant

    A Mathematical Model of Mitotic Exit in Budding Yeast: The Role of Polo Kinase

    Get PDF
    Cell cycle progression in eukaryotes is regulated by periodic activation and inactivation of a family of cyclin–dependent kinases (Cdk's). Entry into mitosis requires phosphorylation of many proteins targeted by mitotic Cdk, and exit from mitosis requires proteolysis of mitotic cyclins and dephosphorylation of their targeted proteins. Mitotic exit in budding yeast is known to involve the interplay of mitotic kinases (Cdk and Polo kinases) and phosphatases (Cdc55/PP2A and Cdc14), as well as the action of the anaphase promoting complex (APC) in degrading specific proteins in anaphase and telophase. To understand the intricacies of this mechanism, we propose a mathematical model for the molecular events during mitotic exit in budding yeast. The model captures the dynamics of this network in wild-type yeast cells and 110 mutant strains. The model clarifies the roles of Polo-like kinase (Cdc5) in the Cdc14 early anaphase release pathway and in the G-protein regulated mitotic exit network

    Status, trends and future dynamics of biodiversity and ecosystems underpinning nature's contributions to people

    Get PDF
    Biodiversity at the species and ecosystem levels is currently under multiple threats almost everywhere in the Asia-Pacific region, and in many areas the situation is now critical (well established). Of the various ecosystems, lowland evergreen forests, alpine ecosystems, limestone karsts, inland wetlands, and estuarine and coastal habitats are most threatened (well established). Genetic diversity within species, both wild and domestic, is also decreasing in many cases as a result of decreasing ranges (established but incomplete). In several countries there has been a small increase in the forest cover which is mostly attributed to monoculture forestry plantations and enabling policies of the governments. Forest fires associated with rapid loss of forest cover is leading to enormous environmental and socio-economic loss (well established) {3.2.1; 3.2.2; 3.2.3; 3.2.4; 3.2.5; 3.3.1}. There has been a steady decline in the populations of large vertebrates due to poaching and illegal trade in wildlife parts and products in the Asia-Pacific region (well established). As a result, most of these species now survive only in the best-managed protected areas (well established). Widespread loss of large vertebrates has had a measureable impact on several forest functions and services, including seed dispersal (established but incomplete). Australia has the highest rate of mammal extinction (>10 per cent) of any continent globally. Bird extinctions on individual Pacific islands range from 15.4 per cent to 87.5 per cent for those with good fossil records, and these extinctions have resulted in the loss of many ecological functions previously performed by birds (well established). Besides wildlife, there is a massive regional trade in timber, traditional medicines and other products (well established). Without adequate protection, remediation and proper policies, the current decline in biodiversity and nature's contributions to people on land, in freshwaters, and in the sea will threaten the quality of life of future generations in the Asia-Pacific region {3.2.1.1; 3.2.1.2; 3.2.1.4; 3.2.1.7; 3.2.2.1; 3.3.1} With the current rate of human population growth, expansion of urban industrial environments, transformation of agriculture in favour of high yielding varieties, transforming forests to uniform plantations of oil palm, rubber or timber trees, the biodiversity and nature's contributions to people in the Asia-Pacific region are likely to be adversely affected in the coming decades (well established). It is predicted that most of the biodiversity in the next few decades may be confined to protected areas or in places where the local communities have taken the lead in local level conservation in lieu of economic incentives and equitable compensation by the stake-holders. Unprecedented increase in human population of the Asia-Pacific region has stressed the fragile ecosystems to their limits; while arable cropping has been extended to sites which were not entirely suitable for it, resulting in soil degradation and erosion (well established) {3.2.1.1; 3.2.1.2; 3.2.1.5; 3.2.2.2; 3.2.2.4; 3.3; 3.3.1; 3.3.6; 3.4}. Freshwater ecosystems in the Asia-Pacific region support more than 28 per cent of aquatic and semi-aquatic species but nearly 37 per cent of these species are threatened due to anthropogenic and climatic drivers (well established). Cumulative impacts of global warming and damming of rivers in some of the river basins will have significant negative impacts on fish production and environmental flows (well established). Likewise, degradation of wetlands has had severe negative impacts on migratory waterfowl, fish production and local livelihoods (well established). However, there are scientific data gaps on the current status of biodiversity and nature's contributions to people in most of the river basins, inland wetlands and peatlands of the region {3.2.2.1; 3.2.2.2; 3.2.2.3; 3.2.2.4}. Coastal and marine habitats are likewise threatened due to commercial aquaculture, overfishing, and pollution affecting biodiversity and nature's contributions to people (well established). Detailed analyses of fisheries production in the region have shown severe decline in recent decades. It is projected that if unsustainable fishing practices continue, there could be no exploitable stocks of fish by as early as 2048. This could lead to trophic cascades and collapse of marine ecosystems (established but incomplete). Loss of seagrass beds which forms main diet of several threatened species such as dugong is a major concern (well established). There is a need to conduct systematic and region-wide assessment of fisheries stocks and coastal habitat in the region to aid conservation, management and restoration. {3.1.3.1; 3.2.3.3; 3.2.3.6; 3.2.4.6; 3.4}. Mangrove ecosystems in the Asia-Pacific region are most diverse in the world. They support a rich biodiversity and provide a range of provisioning, regulating and supporting services, which are crucial for the livelihood of local communities (well established). Both mangrove and intertidal habitats form a buffer from siltation for offshore coral reefs protection hence affecting productivity of reefs including seagrass. However, up to 75 per cent of the mangroves have been degraded or converted in recent decades (well established). The conversion of mangroves to aquaculture, rice, oil palm, and other land-use changes is leading to the loss of the buffer between sea and land which can reduce the impact of natural disasters such as cyclones and tsunamis. It is projected that rise in sea level due to global warming would pose the biggest threat to mangroves, thereby affecting nature's contributions to people especially in Bangladesh, Philippines, New Zealand, Viet Nam and China (well established) {3.2.3.1; 3.2.3.2; 3.3.4}. There has been a steady increase in the number, abundance and impacts of invasive alien species in the Asia-Pacific region, negatively affecting native biodiversity, ecosystem functioning and socio-cultural environments (well established). The total annual loss caused by invasive alien species has been estimated at US35.5billioninSEAsiaandUS35.5 billion in SE Asia and US9B in Australia. Costs to agriculture due to invasive alien species are likewise immense in the region {3.2.1.1; 3.2.1.2; 3.2.1.4; 3.2.1.5; 3.2.1.6; 3.2.1.7; 3.2.2.1; 3.2.2.2; 3.2.2.3; 3.2.3.6; 3.3.5}. There has been a nearly 30 per cent decline in biocultural diversity in the Asia-Pacific region since the 1970s (well established). Decline of linguistic diversity has been catastrophic in the indigenous Australian and Trans-New Guinean families, as a result of a shifting away from small indigenous languages towards larger, national or regional languages (well established). Linguistic and biological diversity often coincide in the Asia-Pacific region and parallel strategies need to be developed for their conservation. National conservation priorities should take into consideration the bioculturally rich areas that are facing great threats {3.2.5; 3.2.5.2; 3.2.5.4; 3.4}. Protected Area coverage in the Asia-Pacific region has increased substantially since last three decades. Despite this progress, however, at least 75 per cent of Key Biodiversity Areas remain unprotected, suggesting that the region is not on track to conserve areas of particular importance for biodiversity, as called for under Aichi Target 11 (well established). Oceania has the highest overall Protected Area coverage in the region. North-East Asia has the highest proportion of Key Biodiversity Areas covered by Protected Areas, but only 1 per cent of its marine area is protected (well established) {3.2.5.6; 3.2.6; 3.2.6.1}. The Asia-Pacific region has high levels of endemism, and some 25 per cent of the region’s endemic species are facing high extinction risks as per the IUCN Red List. Endemic species in some subregions face an extinction risk as high as 46 per cent of endemic species threatened in South Asia (well established). South-East Asia has the greatest number of threatened species and the fastest increases in extinction risk (Red List Index) in the Asia-Pacific region. North Asian endemic species extinction risk is also higher than the regional average; the high percentage of Data Deficient species (36 per cent) indicates that more research and conservation action are needed for endemic species in this subregion (well established) {3.2.1; 3.2.2; 3.2.6.2; 3.3.4}. Some aspects of biodiversity have recently started to recover in several countries in the Asia-Pacific region (established but incomplete). This recovery has resulted from various changes, including population concentration in cities, increased agricultural production per unit area, increasing conservation awareness among citizens, and the enabling policies of the governments. Future trends of biodiversity in the Asia-Pacific region will largely depend on whether other countries will follow this recovering trajectory by stabilizing land/sea use change, manage their natural resources sustainably, and cooperating with each other in meeting the Aichi Targets and the Sustainable Development Goals {3.2.1.5; 3.2.3.5; 3.3.1; 3.3.3; 3.3.6}. Given that the scientific information on the status and trends of biodiversity and nature's contributions to people is not available uniformly across all ecosystems and habitats in the region, the national governments are encouraged to initiate systematic documentation and monitoring of health of ecosystems and ecosystem flows (established but incomplete). Saving terrestrial fauna especially big mammals and other fauna that require large roaming areas such as Orangutans, proboscis monkey, hornbills, tigers, Sumatran rhinoceros, gaurs and Asian elephants can be done by connecting large tracts of forests with wildlife corridors or through rehabilitation projects; the same goes for coastal and marine, freshwater and other ecosystems in the region {3.2.1.1; 3.2.2.4; 3.3.4; 3.4}

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Acute symptomatic hypoglycaemia mimicking ischaemic stroke on imaging:a systemic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute symptomatic hypoglycaemia is a differential diagnosis in patients presenting with stroke-like neurological impairment, but few textbooks describe the full brain imaging appearances. We systematically reviewed the literature to identify how often hypoglycaemia may mimic ischaemic stroke on imaging, common patterns and relationships with hypoglycaemia severity, duration, clinical outcome and add two new cases.</p> <p>Methods</p> <p>We searched EMBASE and Medline databases for papers reporting imaging in adults with symptomatic hypoglycaemia. We analysed the clinical presentation, outcome, brain imaging findings, duration and severity of hypoglycaemia, time course of lesion appearance, including two new cases.</p> <p>Results</p> <p>We found 42 papers describing computed tomography or magnetic resonance imaging in 65 patients, plus our two cases with symptomatic hypoglycaemia. Imaging abnormalities on computed tomography and magnetic resonance were uni or bilateral, cortical or sub-cortical. Thirteen (20%) mimicked cortical or lacunar stroke. Acute lesions had restricted diffusion on magnetic resonance or low attenuation on computed tomography, plus swelling; older lesions showed focal atrophy or disappeared, as with ischaemic stroke. The association between the depth or duration of hypoglycaemia, the severity or extent of neurological deficit, and the imaging abnormalities, was weak.</p> <p>Conclusion</p> <p>Imaging abnormalities in patients with hypoglycaemia are uncommon but very variable, weakly associated with neurological deficit, and about a fifth mimic acute ischaemic stroke. Blood glucose testing should be routine in all patients with acute neurological impairment and hypoglycaemia should be included in the differential diagnosis of imaging appearances in patients presenting with acute stroke.</p

    The opposite effects of fluvoxamine and sertraline in the treatment of psychotic major depression: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Psychotic major depression is a clinical subtype of major depressive disorder. A number of clinical studies have demonstrated the efficacy of the combination of an antidepressant (for example, a tricyclic antidepressant or selective serotonin reuptake inhibitor (SSRI)) and an atypical antipsychotic or electroconvulsive therapy (ECT) in treating psychotic major depression. In several studies, monotherapy of SSRIs such as fluvoxamine has been shown to be effective in the treatment of psychotic major depression.</p> <p>Methods</p> <p>We report on a 36-year-old Japanese woman in whom fluvoxamine (a SSRI with sigma-1 receptor agonist) and sertraline (a SSRI with sigma-1 receptor antagonist) showed the opposite effects on psychotic symptoms in the treatment of psychotic major depression.</p> <p>Results</p> <p>Symptoms of depression and psychosis in the patient who was non-respondent to antipsychotic drugs improved after fluvoxamine monotherapy. At 3 years later, a switch to sertraline from fluvoxamine dramatically worsened the psychotic symptoms in the patient. Then, a switch back to fluvoxamine from sertraline improved these symptoms 1 week after fluvoxamine treatment.</p> <p>Conclusion</p> <p>Doctors should consider the monotherapy of sigma-1 receptor agonist fluvoxamine as an alternative approach to treating psychotic major depression.</p

    Stress Leads to Contrasting Effects on the Levels of Brain Derived Neurotrophic Factor in the Hippocampus and Amygdala

    Get PDF
    Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2h/day) causes growth of dendrites and spines in the basolateral amygdala (BLA), but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity- BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2h) leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders
    corecore